calculus question and need support to help me learn.
Preface
These learning modules are intended as the primary learning material for the Basic Calculus course in senior high school. It contains the main definitions, theorems, operations, formulas and techniques for the course. The material includes numerous worked-out examples to help you understand the different principles and gain proficiency in the various problem-solving skills and techniques
Calculus is one of the most important inventions in mathematics. Developed in the second half of the 17th century by Isaac Newton and Gottfried Leibniz, it is now a fundamental area of mathematics and is a powerful tool used extensively not only by mathematicians but also by engineers, scientists, economists and others in a wide variety of applications. Calculus provides the language and concepts that allow us to model natural phenome
An introductory course in calculus, such as the Grade 11 Basic Calculus course, is now a standard course in the senior high school curriculum in almost all countries all over the world. It is important that you learn the fundamental concepts and skills now. In particular, you will use the knowledge from this course in learning physics, which will be taught to you in Grade 12 using a calculus-based approach. There are still many things to learn about calculus, and you will encounter them in college
The best way to master the concepts is to study very well, and not just read, these modules. By studying, we mean that you should take your pen and paper, and work carefully through the examples, and solve the exercises given in learning modules until you are comfortable with the ideas and techniques. This is the best way to learn mathematics
The Basic Calculus course will require many concepts and skills that you have already learned in previous math courses, such as equations, functions, polynomials and their graphs. However, there will be some new ideas that you will encounter for the first time. Some of these ideas may appear abstract and complicated, but we expect all students to appreciate and learn how to use them. Because senior high school is a transition to college, mastering this course will prepare you for a higher level of academic rigor and precision. We are confident that you can do it
Requirements:
Basic Calculus Learner’s Material This learning resource was collaboratively developed and reviewed by educators from public and private schools, colleges, and/or universities. We encourage teachers and other education stakeholders to email their feedback, comments and recommendations to the Department of Education at action@deped.gov.ph. We value your feedback and recommendations. Department of Education Republic of the Philippines
ii Basic Calculus Learner’s Material First Edition 2016 Republic Act 8293. Section 176 states that: No copyright shall subsist in any work of the Government of the Philippines. However, prior approval of the government agency or office wherein the work is created shall be necessary for exploitation of such work for profit. Such agency or office may, among other things, impose as a condition the payment of royalties. Borrowed materials (i.e., songs, stories, poems, pictures, photos, brand names, trademarks, etc.) included in this learning resource are owned by their respective copyright holders. DepEd is represented by the Filipinas Copyright Licensing Society (FILCOLS), Inc. in seeking permission to use these materials from their respective copyright owners. All means have been exhausted in seeking permission to use these materials. The publisher and authors do not represent nor claim ownership over them. Only institutions and companies which have entered an agreement with FILCOLS and only within the agreed framework may copy from this Learner’s Material. Those who have not entered in an agreement with FILCOLS must, if they wish to copy, contact the publishers and authors directly. Authors and publishers may email or contact FILCOLS at Development Team of the Basic Calculus Learner’s Material Jose Maria P. Balmaceda, PhD Bureau of Curriculum Development Bureau of Learning Resources Printed in the Philippines by _________________ Department of Education-Bureau of Learning Resources (DepEd-BLR) Office Address: Ground Floor Bonifacio Building, DepEd Complex Meralco Avenue, Pasig City, Philippines 1600 Carlene Perpetua P. Arceo, PhD Richard S. Lemence, PhD Louie John D. Vallejo, PhDJose Maria L. Escaner IV, PhD Angela Faith B. Daguman Rayson F. Punzal filcols@gmail.com or (02) 435-5258, respectively. Telefax: (02) 634-1054 or 634-1072 E-mail Address: blr.lrqad@deped.gov.ph; blr.lrpd@deped.gov.ph Management Team of the Basic Calculus Learner’s Material Thomas Herald M. Vergara Riuji J. Sato Mark Lexter T. De Lara Genesis John G. Borja Reviewers Layout Artist Cover Art Illustrator Jerome T. Dimabayao, PhD JM Quincy D. Gonzales Published by the Department of Education Secretary: Leonor M. Briones, PhDUndersecretary: Dina S. Ocampo, PhD
PrefaceTheselearningmodulesareintendedastheprimarylearningmaterialfortheBasicCalculuscourseinseniorhighschool.Itcontainsthemaindenitions,theorems,operations,formulasandtechniquesforthecourse.Thematerialincludesnumerousworked-outexamplestohelpyouunderstandthedierentprinciplesandgainprociencyinthevariousproblem-solvingskillsandtechniques.Calculusisoneofthemostimportantinventionsinmathematics.Developedinthesecondhalfofthe17thcenturybyIsaacNewtonandGottfriedLeibniz,itisnowafundamentalareaofmathematicsandisapowerfultoolusedextensivelynotonlybymathematiciansbutalsobyengineers,scientists,economistsandothersinawidevarietyofapplications.Calculusprovidesthelanguageandconceptsthatallowustomodelnaturalphenomena.Anintroductorycourseincalculus,suchastheGrade11BasicCalculuscourse,isnowastandardcourseintheseniorhighschoolcurriculuminalmostallcountriesallovertheworld.Itisimportantthatyoulearnthefundamentalconceptsandskillsnow.Inparticular,youwillusetheknowledgefromthiscourseinlearningphysics,whichwillbetaughttoyouinGrade12usingacalculus-basedapproach.Therearestillmanythingstolearnaboutcalculus,andyouwillencounterthemincollege.Thebestwaytomastertheconceptsistostudyverywell,andnotjustread,thesemodules.Bystudying,wemeanthatyoushouldtakeyourpenandpaper,andworkcare-fullythroughtheexamples,andsolvetheexercisesgiveninlearningmodulesuntilyouarecomfortablewiththeideasandtechniques.Thisisthebestwaytolearnmathematics.TheBasicCalculuscoursewillrequiremanyconceptsandskillsthatyouhavealreadylearnedinpreviousmathcourses,suchasequations,functions,polynomialsandtheirgraphs.However,therewillbesomenewideasthatyouwillencounterforthersttime.Someoftheseideasmayappearabstractandcomplicated,butweexpectallstudentstoappreciateandlearnhowtousethem.Becauseseniorhighschoolisatransitiontocollege,masteringthiscoursewillprepareyouforahigherlevelofacademicrigorandprecision.Wearecondentthatyoucandoit.
ContentsPrefacei1LimitsandContinuity1Lesson1:TheLimitofaFunction:TheoremsandExamples…………..2Topic1.1:TheLimitofaFunction……………………..3Topic1.2:TheLimitofaFunctionatcversustheValueoftheFunctionatc..18Topic1.3:IllustrationofLimitTheorems………………….23Topic1.4:LimitsofPolynomial,Rational,andRadicalFunctions………………………….30Lesson2:LimitsofSomeTranscendentalFunctionsandSomeIndeterminateForms.43Topic2.1:LimitsofExponential,Logarithmic,andTrigonometricFunctions…44Topic2.2:SomeSpecialLimits……………………….62Lesson3:ContinuityofFunctions………………………..73Topic3.1:ContinuityataPoint………………………74Topic3.2:ContinuityonanInterval…………………….83Lesson4:MoreonContinuity…………………………..92Topic4.1:DierentTypesofDiscontinuities…………………93Topic4.2:TheIntermediateValueandtheExtremeValueTheorems…….105Topic4.3:ProblemsInvolvingContinuity………………….115
2Derivatives123Lesson5:TheDerivativeastheSlopeoftheTangentLine……………124Topic5.1:TheTangentLinetotheGraphofaFunctionataPoint……..125Topic5.2:TheEquationoftheTangentLine………………..131Topic5.3:TheDenitionoftheDerivative…………………139Lesson6:RulesofDierentiation…………………………151Topic6.1:DierentiabilityImpliesContinuity………………..152Topic6.2:TheDierentiationRulesandExamplesInvolvingAlgebraic,Expo-nential,andTrigonometricFunctions…………………158Lesson7:Optimization……………………………..169Topic7.1:OptimizationusingCalculus…………………..170Lesson8:Higher-OrderDerivativesandtheChainRule……………..185Topic8.1:Higher-OrderDerivativesofFunctions………………186Topic8.2:TheChainRule…………………………193Lesson9:ImplicitDierentiation…………………………200Topic9.1:WhatisImplicitDierentiation?…………………201Lesson10:RelatedRates…………………………….2123Integration223Lesson11:Integration………………………………224Topic11.1:IllustrationofanAntiderivativeofaFunction………….225Topic11.2:AntiderivativesofAlgebraicFunctions……………..227Topic11.3:AntiderivativesofFunctionsYieldingExponentialFunctionsandLogarithmicFunctions………………………..231Topic11.4:AntiderivativesofTrigonometricFunctions……………234
Lesson12:TechniquesofAntidierentiation……………………237Topic12.1:AntidierentiationbySubstitutionandbyTableofIntegrals…..238Lesson13:ApplicationofAntidierentiationtoDierentialEquations………258Topic13.1:SeparableDierentialEquations…………………259Lesson14:ApplicationofDierentialEquationsinLifeSciences…………267Topic14.1:SituationalProblemsInvolvingGrowthandDecayProblems…..268Lesson15:RiemannSumsandtheDeniteIntegral……………….280Topic15.1:ApproximationofAreausingRiemannSums…………..281Topic15.2:TheFormalDenitionoftheDeniteIntegral………….299Lesson16:TheFundamentalTheoremofCalculus………………..316Topic16.1:IllustrationoftheFundamentalTheoremofCalculus………317Topic16.2:ComputationofDeniteIntegralsusingtheFundamentalTheoremofCalculus………………….321Lesson17:IntegrationTechnique:TheSubstitutionRuleforDeniteIntegrals….332Topic17.1:IllustrationoftheSubstitutionRuleforDeniteIntegrals……333Lesson18:ApplicationofDeniteIntegralsintheComputationofPlaneAreas….345Topic18.1:AreasofPlaneRegionsUsingDeniteIntegrals…………346Topic18.2:ApplicationofDeniteIntegrals:WordProblems………..362
Chapter1LimitsandContinuity
LESSON1:TheLimitofaFunction:TheoremsandExamplesLEARNINGOUTCOMES:Attheendofthelesson,thelearnershallbeableto:1.Illustratethelimitofafunctionusingatableofvaluesandthegraphofthefunction;2.Distinguishbetweenlimx!cf(x)andf(c);3.Illustratethelimittheorems;and4.Applythelimittheoremsinevaluatingthelimitofalgebraicfunctions(polynomial,ra-tional,andradical).2
TOPIC1.1:TheLimitofaFunctionLIMITSConsiderafunctionfofasinglevariablex.Consideraconstantcwhichthevariablexwillapproach(cmayormaynotbeinthedomainoff).Thelimit,tobedenotedbyL,istheuniquerealvaluethatf(x)willapproachasxapproachesc.Insymbols,wewritethisprocessaslimx!cf(x)=L:Thisisread,“Thelimitoff(x)asxapproachescisL.”LOOKINGATATABLEOFVALUESToillustrate,letusconsiderlimx!2(1+3x):Here,f(x)=1+3xandtheconstantc,whichxwillapproach,is2.Toevaluatethegivenlimit,wewillmakeuseofatabletohelpuskeeptrackoftheeectthattheapproachofxtoward2willhaveonf(x).Ofcourse,onthenumberline,xmayapproach2intwoways:throughvaluesonitsleftandthroughvaluesonitsright.Werstconsiderapproaching2fromitsleftorthroughvalueslessthan2.Rememberthatthevaluestobechosenshouldbecloseto2.xf(x)141:45:21:76:11:96:71:956:851:9976:9911:99996:99971:99999996:9999997Nowweconsiderapproaching2fromitsrightorthroughvaluesgreaterthanbutcloseto2.3
xf(x)3102:58:52:27:62:17:32:037:092:0097:0272:00057:00152:00000017:0000003Observethatasthevaluesofxgetcloserandcloserto2,thevaluesoff(x)getcloserandcloserto7.Thisbehaviorcanbeshownnomatterwhatsetofvalues,orwhatdirection,istakeninapproaching2.Insymbols,limx!2(1+3x)=7:EXAMPLE1:Investigatelimx! 1(x2+1)byconstructingtablesofvalues.Here,c= 1andf(x)=x2+1:Westartagainbyapproaching 1fromtheleft.xf(x) 1:53:25 1:22:44 1:012:0201 1:00012:00020001Nowapproach 1fromtheright.xf(x) 0:51:25 0:81:64 0:991:9801 0:99991:99980001Thetablesshowthatasxapproaches 1,f(x)approaches2.Insymbols,limx! 1(x2+1)=2:4
EXAMPLE2:Investigatelimx!0jxjthroughatableofvalues.Approaching0fromtheleftandfromtheright,wegetthefollowingtables:xjxj 0:30:3 0:010:01 0:000090:00009 0:000000010:00000001xjxj0:30:30:010:010:000090:000090:000000010:00000001Hence,limx!0jxj=0:EXAMPLE3:Investigatelimx!1×2 5x+4x 1byconstructingtablesofvalues.Here,c=1andf(x)=x2 5x+4x 1:Takenotethat1isnotinthedomainoff,butthisisnotaproblem.Inevaluatingalimit,rememberthatweonlyneedtogoverycloseto1;wewillnotgoto1itself.Wenowapproach1fromtheleft.xf(x)1:5 2:51:17 2:831:003 2:9971:0001 2:9999Approach1fromtheright.xf(x)0:5 3:50:88 3:120:996 3:0040:9999 3:00015
Thetablesshowthatasxapproaches1,f(x)approaches 3.Insymbols,limx!1×2 5x+4x 1= 3:EXAMPLE4:Investigatethroughatableofvalueslimx!4f(x);iff(x)=8<:x+1ifx<4(x 4)2+3ifx4:Thislooksabitdierent,butthelogicandprocedureareexactlythesame.Westillapproachtheconstant4fromtheleftandfromtheright,butnotethatweshouldevaluatetheappropriatecorrespondingfunctionalexpression.Inthiscase,whenxapproaches4fromtheleft,thevaluestakenshouldbesubstitutedinf(x)=x+1.Indeed,thisisthepartofthefunctionwhichacceptsvalueslessthan4.So,xf(x)3:74:73:854:853:9954:9953:999994:99999Ontheotherhand,whenxapproaches4fromtheright,thevaluestakenshouldbesubstitutedinf(x)=(x 4)2+3.So,xf(x)4:33:094:13:014:0013:0000014:000013:00000000016
Observethatthevaluesthatf(x)approachesarenotequal,namely,f(x)approaches5fromtheleftwhileitapproaches3fromtheright.Insuchacase,wesaythatthelimitofthegivenfunctiondoesnotexist(DNE).Insymbols,limx!4f(x)DNE:Remark1:Weneedtoemphasizeanimportantfact.Wedonotsaythatlimx!4f(x)\equalsDNE",nordowewrite\limx!4f(x)=DNE",because\DNE"isnotavalue.Inthepreviousexample,\DNE"indicatedthatthefunctionmovesindierentdirectionsasitsvariableap-proachescfromtheleftandfromtheright.Inothercases,thelimitfailstoexistbecauseitisundened,suchasforlimx!01xwhichleadstodivisionof1byzero.Remark2:Haveyounoticedapatterninthewaywehavebeeninvestigatingalimit?Wehavebeenspecifyingwhetherxwillapproachavaluecfromtheleft,throughvalueslessthanc,orfromtheright,throughvaluesgreaterthanc.Thisdirectionmaybespeciedinthelimitnotation,limx!cf(x)byaddingcertainsymbols.Ifxapproachescfromtheleft,orthroughvalueslessthanc,thenwewritelimx!c f(x).Ifxapproachescfromtheright,orthroughvaluesgreaterthanc,thenwewritelimx!c+f(x).Furthermore,wesaylimx!cf(x)=Lifandonlyiflimx!c f(x)=Landlimx!c+f(x)=L:Inotherwords,foralimitLtoexist,thelimitsfromtheleftandfromtherightmustbothexistandbeequaltoL.Therefore,limx!cf(x)DNEwheneverlimx!c f(x)6=limx!c+f(x):Theselimits,limx!c f(x)andlimx!c+f(x),arealsoreferredtoasone-sidedlimits,sinceyouonlyconsidervaluesononesideofc.Thus,wemaysay:inourveryrstillustrationthatlimx!2(1+3x)=7becauselimx!2 (1+3x)=7andlimx!2+(1+3x)=7.7
inExample1,limx! 1(x2+1)=2sincelimx! 1 (x2+1)=2andlimx! 1+(x2+1)=2.inExample2,limx!0jxj=0becauselimx!0 jxj=0andlimx!0+jxj=0.inExample3,limx!1x2 5x+4x 1= 3becauselimx!1 x2 5x+4x 1= 3andlimx!1+x2 5x+4x 1= 3.inExample4,limx!4f(x)DNEbecauselimx!4 f(x)6=limx!4+f(x).LOOKINGATTHEGRAPHOFy=f(x)Ifoneknowsthegraphoff(x),itwillbeeasiertodetermineitslimitsasxapproachesgivenvaluesofc.Consideragainf(x)=1+3x.Itsgraphisthestraightlinewithslope3andintercepts(0;1)and( 1=3;0).Lookatthegraphinthevicinityofx=2.Youcaneasilyseethepoints(fromthetableofvaluesinpage4)(1;4);(1:4;5:2);(1:7;6:1),andsoon,approachingthelevelwherey=7.Thesamecanbeseenfromtheright(fromthetableofvaluesinpage4).Hence,thegraphclearlyconrmsthatlimx!2(1+3x)=7:xyy=1+3x(2;7) 10123412345678Letuslookattheexamplesagain,onebyone.RecallExample1wheref(x)=x2+1.Itsgraphisgivenby8
3 2 1012312345678xyy=x2+1( 1;2)Itcanbeseenfromthegraphthatasvaluesofxapproach 1,thevaluesoff(x)approach2.RecallExample2wheref(x)=jxj.xyy=jxj(0;0)Itisclearthatlimx!0jxj=0,thatis,thetwosidesofthegraphbothmovedownwardtotheorigin(0;0)asxapproaches0.RecallExample3wheref(x)=x2 5x+4x 1:9
1234 4 3 2 10xyy=x2 5x+4x 1(1; 3)Takenotethatf(x)=x2 5x+4x 1=(x 4)(x 1)x 1=x 4;providedx6=1.Hence,thegraphoff(x)isalsothegraphofy=x 1,excludingthepointwherex=1.RecallExample4wheref(x)=8<:x+1ifx<4(x 4)2+3ifx4:012345671234567xyy=f(x)(4;5)(4;3)Again,wecanseefromthegraphthatf(x)hasnolimitasxapproaches4.Thetwoseparatepartsofthefunctionmovetowarddierenty-levels(y=5fromtheleft,y=3fromtheright)inthevicinityofc=4.10
So,ingeneral,ifwehavethegraphofafunction,suchasbelow,determininglimitscanbedonemuchfasterandeasierbyinspection. 3 2 10123456123456xy( 2;1)(0;3)(3;0)(3;2)(3;4)Forinstance,itcanbeseenfromthegraphofy=f(x)that:a.limx! 2f(x)=1.b.limx!0f(x)=3.Here,itdoesnotmatterthatf(0)doesnotexist(thatis,itisundened,orx=0isnotinthedomainoff).Alwaysrememberthatwhatmattersisthebehaviorofthefunctionclosetoc=0andnotpreciselyatc=0.Infact,eveniff(0)weredenedandequaltoanyotherconstant(notequalto3),like100or 5000,thiswouldstillhavenobearingonthelimit.Incaseslikethis,limx!0f(x)=3prevailsregardlessofthevalueoff(0),ifany.c.limx!3f(x)DNE.Ascanbeseeninthegure,thetwopartsofthegraphnearc=3donotmovetowardacommony-levelasxapproachesc=3.SolvedExamplesLOOKINGATTABLESOFVALUESEXAMPLE1:Determinelimx!1 x3 1.Solution.Approachingx=1fromtheleft,11
xf(x)0:9 0:2710:99 0:0297010:999 0:0029970010:9999 0:000299970:99999 0:0000299997Now,takingvaluesfromtherightofx=1,xf(x)1:10:3311:010:0303011:0010:0030030011:00010:000300031:000010:0000300003Thus,limx!1 x3 1=0:.EXAMPLE2:Determinelimx!0jx+2j.Solution.Takingvaluesfromtheleftof0,xf(x) 0:11:9 0:051:95 0:011:99 0:0051:995 0:0011:999Approaching0fromtheright,12
xf(x)0:12:10:052:050:012:010:0052:0050:0012:001Thus,limx!0jx+2j=2:.EXAMPLE3:Givenf(x)=8<:2x 3;x4;x2 x+1;x>4:Evaluatelimx!4f(x).Solution.Approachingx=4fromtheleft,xf(x)3:94:83:954:93:994:983:9954:993:9994:998Takingvaluesfromtherightof4,xf(x)4:113:714:0513:35254:0113:07014:00513:0350254:00113:007001Hence,limx!4f(x)DNE..13
LOOKINGATGRAPHSOFFUNCTIONSEXAMPLE4:RecallExample1,wheref(x)=x3 1andwhosegraphisasfollows:xyy=x3 1(1;0)Solution.Itisclearfromthegraphthatlimx!1 x3 1=0:.EXAMPLE5:RecallExample2,wheref(x)=jx+1j.Itsgraphisasfollows:xyy=jx+2j(0;2)Solution.Itisclearfromthegraphabovethatlimx!0jx+2j=2:.14
EXAMPLE6:RecallExample3,wheref(x)=8<:2x 3;x4;x2 x+1;x>4;andwhosegraphisasfollows:xy(4;5)(4;13)Solution.Fromthegraphabove,limx!4 f(x)=5andlimx!4+f(x)=13.Hence,limx!4f(x)DNE..15
EXAMPLE7:Now,considerthefollowinggraphoffunction:xy( 2;3)(0;5)(3;2)(3;6)(3;3)Solution.Fromthegraph,1.limx! 2f(x)=3,2.limx!0f(x)=5,3.limx!3f(x)DNE..SupplementaryProblems1.Usingtablesofvalues,determinethelimitsofthefollowing.(a)limx!0(x)(b)limx!1)2x)(c)limx!2( x+1)(d)limx! 1(1 x)(e)limx!0(2x 1)(f)limx!3(x 3)(g)limx!2(3×2 2)(h)limx!0(5 x x2)(i)limx!1(x3+1)(j)limx!0(1 x2 x3)(k)limx!1px3 1(l)limx!0px2 x3(m)limx!1px4 x2+1(n)limx!0x1 x(o)limx!11 x2x+116
2.Thegraphoff(x)isgivenbyxy( 4;5)( 1; 2)( 1;4)(1;4)(3; 4)(5; 2)Determinethefollowinglimits.(a)limx! 4f(x)(b)limx! 1f(x)(c)limx!1f(x)(d)limx!3f(x)(e)limx!5f(x)17
TOPIC1.2:TheLimitofaFunctionatcversustheValueoftheFunctionatcWewillmostlyrecallourdiscussionsandexamplesinLesson1.Letusagainconsiderlimx!2(1+3x):Recallthatitstablesofvaluesare:xf(x)141:45:21:76:11:96:71:956:851:9976:9911:99996:99971:99999996:9999997xf(x)3102:58:52:27:62:17:32:037:092:0097:0272:00057:00152:00000017:0000003andwehadconcludedthatlimx!2(1+3x)=7.Incomparison,f(2)=7.So,inthisexample,limx!2f(x)andf(2)areequal.Noticethatthesameholdsforthenextexamplesdiscussed:limx!cf(x)f(c)limx! 1(x2+1)=2f( 1)=2limx!0jxj=0f(0)=0This,however,isnotalwaysthecase.Letusconsiderthefunctionf(x)=8<:jxjifx6=02ifx=0:Incontrasttothesecondexampleabove,theentriesarenowunequal:limx!cf(x)f(c)limx!0jxj=0f(0)=218
Doesthisinanywayaecttheexistenceofthelimit?Notatall.Thisexampleshowsthatlimx!cf(x)andf(c)maybedistinct.Furthermore,considerthethirdexampleinLesson1wheref(x)=8<:x+1ifx<4(x 4)2+3ifx4:Wehave:limx!cf(x)f(c)limx!4f(x)DNEf(4)=3Onceagainweseethatlimx!cf(x)andf(c)arenotthesame.AreviewofthegraphgiveninLesson1(redrawnbelow)willemphasizethisfact. 3 2 10123456123456xy( 2;1)(0;3)(3;0)(3;2)(3;4)Werestatetheconclusions,addingtherespectivevaluesoff(c):1.limx! 2f(x)=1andf( 2)=1.2.limx!0f(x)=3andf(0)doesnotexist(orisundened).19
3.limx!3f(x)DNEandf(3)alsodoesnotexist(orisundened).SolvedExamplesEXAMPLE1:Considernowf(x)= x3 1.Comparelimx!1f(x)andf(1).Solution.Inthisexample,f(1)andlimx!1f(x)areequal.limx!cf(x)f(c)limx!1(x3 1)=0f(1)=0.EXAMPLE2:Cinsiderf(x)=jx+2jandcomparelimx!0f(x)andf(0).Solution.Here,f(0)andlimx!0f(x)areequal.limx!cf(x)f(c)limx!0jx+2j=2f(0)=2.EXAMPLE3:Giventhefunctionf(x)=8<:2x 3;x4;x2 x+1;x>4:Comparelimx!4f(x)andf(4).Solution.Here,wetheentriesaredierent.limx!cf(x)f(c)limx!4(f(x))DNEf(4)=5.20
EXAMPLE4:Giventhefollowinggraphoff(x),determineiflimx!cf(x)=f(c)ati.c= 2,ii.c=0andiii.c=3.xy( 2;3)(0;5)(3;2)(3;6)(3;3)Solution.Itisclearfromthegraphthati.limx! 2f(x)=3=f( 2),ii.limx!0f(x)=5=f(0)andiii.f(3)=6butlimx!3f(x)DNE..SupplementaryProblemsDetermineiflimx!cf(x)=f(c).1.f(x)=x+2;c= 12.f(x)=x 2;c=03.f(x)=x2+2;c=14.f(x)=x2 1;c= 15.f(x)=x3 x;c=06.f(x)=x3 3x;c=17.f(x)=x2 4;c=28.f(x)=x4 1;c=121
9.f(x)=x3 xx;c=010.f(x)=x3 3xx;c=111.f(x)=x2 4x 2;c=212.f(x)=x4 1x 1;c=113.f(x)=px4 1x 1;c=114.f(x)=px x2x2 x;c=015.f(x)=px3 1x 1;c=116.(atc=2)f(x)=8<:x 1ifx<2;(x 2)2+1ifx2;17.(atc= 1)f(x)=8<:x2 1ifx<